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Abstract.16

Background: While both cognitive and magnetic resonance imaging (MRI) data has been used to predict progression in
Alzheimer’s disease, heterogeneity between patients makes it challenging to predict the rate of cognitive and functional
decline for individual subjects.
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Objective: To investigate prognostic power of MRI-based biomarkers of medial temporal lobe atrophy and macroscopic
tissue change to predict cognitive decline in individual patients in clinical trials of early Alzheimer’s disease.
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Methods: Data used in this study included 312 patients with mild cognitive impairment from the ADNI dataset with baseline
MRI, cerebrospinal fluid amyloid-�, cognitive test scores, and a minimum of two-year follow-up information available. We
built a prognostic model using baseline cognitive scores and MRI-based features to determine which subjects remain stable
and which functionally decline over 2 and 3-year follow-up periods.
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Results: Combining both sets of features yields 77% accuracy (81% sensitivity and 75% specificity) to predict cognitive
decline at 2 years (74% accuracy at 3 years with 75% sensitivity and 73% specificity). When used to select trial participants,
this tool yields a 3.8-fold decrease in the required sample size for a 2-year study (2.8-fold decrease for a 3-year study) for a
hypothesized 25% treatment effect to reduce cognitive decline.
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Conclusion: When used in clinical trials for cohort enrichment, this tool could accelerate development of new treatments
by significantly increasing statistical power to detect differences in cognitive decline between arms. In addition, detection of
future decline can help clinicians improve patient management strategies that will slow or delay symptom progression.
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INTRODUCTION30

Alzheimer’s disease (AD) is a neurodegenerative31

disorder characterized by abnormal accumulation of32

amyloid-� (A�) and intracellular neurofibrillary tan-33

gles in the brain resulting in progressive synaptic34

dysfunction, irreversible neuronal loss, and cognitive35

deficits [1, 2]. This pathological process gradually36

develops over many years, with a long asymptomatic37

phase before a clinical diagnosis of AD [3]. Patients38

in the early stages of AD dementia are not a mono-39

lithic bloc. Some experience decline in their cognitive40

abilities at different rates, with some patients pro-41

gressing very fast while a large portion of patients42

remain stable [4, 5]. This heterogeneity increases the43

complexity of treatment development. After numer-44

ous failures of candidate drugs for dementia due to45

AD, the field has moved toward clinical trials at an46

earlier stage (mild cognitive impairment (MCI) with47

proven AD biomarkers) [6, 7]. However, even recent48

trials in amyloid positive patients with MCI do not49

factor the marked inter-individual differences in rates50

of progression in subjects with MCI, which can have51

a profound effect on the outcome of trials [8]. Recent52

clinical trial results have shown that inter-individual53

differences in speed of progression can have a major54

impact on the achievement of primary aims, and can55

leave uncertainty about the true efficacy of putative56

treatments [9]. Accurately predicting the progression57

rate in individual patients with mild cognitive impair-58

ment and mild dementia due to AD would enable59

the enrichment of patient populations in clinical trials60

by increasing the mean cognitive/functional decline61

over the trial duration, and therefore facilitating the62

demonstration of the treatment effect (or the absence63

of treatment effect). This in turn could lead to poten-64

tially faster, more efficient candidate drug testing.65

In order to be generalizable to the population after66

drug approval, tools to predict future progression in67

MCI would have to be based on readily available68

measures in clinical practice, such as brain MRI and69

cognitive tests. Indeed, AD is associated with a ste-70

reotypical pattern of early cerebral atrophy in the71

medial temporal lobe limbic regions including ent-72

orhinal cortex (EC) and hippocampus (HC) [1]. The73

early degeneration in medial temporal lobe lim- 74

bic structures consistent with early memory deficits 75

provides the anatomical basis to use MRI-based mea- 76

sures of atrophy as valid markers of disease state and 77

progression [10, 11]. 78

We have previously developed Scoring by Non- 79

local Image Patch Estimator (SNIPE) as a grading 80

metric to measure AD-related structural alterations in 81

brain anatomy, with applications to both hippocampal 82

and entorhinal structures [12]. Based on this non- 83

local patch-based framework, SNIPE estimates the 84

structural similarity of a new subject under study to 85

a number of templates present in a training library 86

consisting of cognitively normal subjects and patients 87

with AD. In our previous work, we showed that base- 88

line SNIPE scores could differentiate patients with 89

MCI that remain stable versus those that progress 90

to AD [13], and that baseline SNIPE scores enable 91

AD prediction in a group of cognitively intact sub- 92

jects seven years before the clinical diagnosis of 93

AD dementia [14]. More recently, we demonstrated 94

that combining MRI features and neurocognitive test 95

results at baseline could yield 78% accuracy in pre- 96

diction of conversion from MCI to AD at 2 and 3 years 97

before diagnosis of AD (and up to 87% accuracy, five 98

years before diagnosis) [15]. 99

While these results were promising, conversion to 100

AD as a categorical diagnosis may be too late an event 101

when testing new neuroprotective therapies. In this 102

study, we investigated the ability of our models to 103

predict cognitive and functional decline (as opposed 104

to categorical change in diagnosis from MCI to mild 105

dementia) in a cohort of patients with mild AD simi- 106

lar to those chosen for recent clinical trials [16, 17]. 107

Using only baseline cognitive test results and baseline 108

MR-driven features, we evaluate the accuracy, sensi- 109

tivity, and specificity of our model to predict decline 110

over two- and three-year follow-up periods, durations 111

commonly used in clinical trials. Functional decline 112

is defined as an increase in global Clinical Dementia 113

Rating-Sum of boxes (CDR-SB) score [18]. Finally, 114

we evaluate the potential use of our proposed tech- 115

nique as a screening tool for enrichment in clinical 116

trials targeting patients likely to experience cognitive 117

decline in near future.
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METHODS118

Dataset119

Data used in the preparation of this article were120

obtained from the Alzheimer’s Disease Neuroim-121

aging Initiative (ADNI) database (http://adni.loni.122

usc.edu). The ADNI was launched in 2003 as a123

public-private partnership, led by Principal Investi-124

gator Michael W. Weiner, MD. The primary goal of125

ADNI has been to test whether serial MRI, positron126

emission tomography (PET), other biological mark-127

ers, and clinical and neuropsychological assessment128

can be combined to measure the progression of MCI129

and early AD.130

In this work, we selected subjects with mild AD131

from ADNI study for which T1 MRI data and Mon-132

treal Cognitive Assessment (MoCA) scores were133

available at baseline. All subjects provided informed134

consent and the protocol was approved by the institu-135

tion review board at all sites. The inclusion of MoCA136

limited this study to ADNI2 and ADNI-GO datasets,137

since this measurement was not included in ADNI1138

dataset. The key inclusion criteria here are similar to139

those used for current clinical trials of AD in amnes-140

tic MCI cohorts: 1) A CDR-Global Score of 0.5,141

2) A Mini-Mental State Examination (MMSE) score142

between 24 and 30 (inclusive), and 3) having a posi-143

tive amyloid PET scan with a cut-off of 0.79 SUVr for144

positivity. Application of these criteria reduced the145

number of subjects available at baseline in ADNI2146

and ADNI-GO to 312. These subjects were labeled147

as either stable or progressive based on a 2-point148

increase [19] in their global CDR-SB score from a149

total possible of 18 points [18]. Here, we refer to the150

stable and progressive mild AD subjects as pMCI and151

sMCI, respectively.152

Preprocessing153

All the selected T1 MR images were preproce-154

ssed using a fully automatic pipeline. This pipeline155

includes denoising [20], correction of intensity156

Table 1
Dataset Information

2 years 3 years
follow-up follow-up

pMCI 55 63
sMCI 155 108
pMCI:sMCI ratio 0.355 0.583
Age at baseline 72.5 ± 6.7 71.9 ± 6.6
% Male 54.3 55.6

inhomogeneity using N3 [21], and intensity nor- 157

malization. MRI scans were then registered to 158

pseudo-Talairach stereotaxic space [22, 23] using a 159

population-specific template [24]. Brain extraction 160

was then performed using BEaST [25]. 161

MRI features: SNIPE scoring 162

To automatically segment HC and EC, a multi- 163

template non-local patch-based method has been 164

used [26]. This method uses a set of MRI volumes 165

with manually segmented HC and EC as training 166

library. The target patch is then weighted based on 167

how much it resembles each patch in the training 168

dataset. The final label of the patch (targeted structure 169

or background) was assigned based on a weighted 170

average of all similar patches. 171

The SNIPE grading or scoring of the HC and EC 172

is then achieved by estimating the patch similarity of 173

the subject under study to different training popula- 174

tions: normal controls and patients with AD dementia 175

[12, 13]. Following the same linear regression method 176

used in [27], SNIPE scores are corrected for age and 177

sex based on the normal control population. Visual 178

quality control was performed on all processed MR 179

datasets. 180

Classification 181

Our feature set contains age, sex, cognitive test 182

scores including Alzheimer’s Disease Assessment 183

Scale (ADAS), MoCA, Rey Auditory Verbal Learn- 184

ing Task (RAVLT), MMSE, and MR-based z-scored 185

features (SNIPE scores for HC and EC) from baseline 186

data that are used as input to the classifier. 187

Since the number of sMCI and pMCI subjects were 188

not the same, and standard methods may have diffi- 189

culty with such imbalanced data, we used a balanced 190

random forest algorithm to train our predictive model 191

[28]. This method down-samples the majority class 192

and trains the trees of the random forest based on a 193

more balanced data set. 194

We trained our prognostic model using different 195

combinations of features drawn from baseline visits. 196

These classifiers were trained either using MRI- 197

driven SNIPE scores and age, neurocognitive scores 198

and age, or a combination of both SNIPE and neu- 199

rocognitive scores plus age, and each model was 200

validated using 10-fold cross-validation. The classi- 201

fication performance for both follow-up periods (i.e., 202

2 and 3 years) was evaluated based on the measured 203

sensitivity, specificity, and accuracy.

http://adni.loni.usc.edu
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Power analysis204

Following the method used in [29], we estimated
the required sample size to detect a reduction in the
mean annual rate of cognitive decline based on CDR-
SB score. This method assumes that rates of decline
are linear for each subject. We used a two-sided test
and set the standard significance level to 0.05 with a
power of 80%. The required sample size per arm was
estimated using the following formula [30]:

n =
2

(
σ2

s + σ2∈∑
(tj−t̄)2

) (
Z1− a

2
+ Z1−β

)

�2 (1)

Where � and 1-� are the significance level and power205

and t̄ represents the mean measure time. σ2
s and206

σ2∈∑
(tj−t̄)2 denote the between- and within-subject207

variance of the data and can be estimated by fitting208

a linear mixed effects model to the data. Here, �209

represents the treatment effect. We evaluated differ-210

ent values of �, when � = 25% reflects a slowing of211

disease-related functional and cognitive decline by212

at least 25%, attributed to the tested drug. Note that213

the cognitive decline may be due to normal aging214

as well as AD-related pathology. Here, we remove215

the annualized decline due to normal aging so as216

not to overestimate the benefit of enrichment when217

computing the treatment effect.218

We estimated and compared sample sizes for two219

groups of subjects. First, using data from all the mild220

AD subjects in the ADNI dataset that fit the selection221

criteria above (n = 312), i.e., the unenriched group.222

Second, using only the subset of those ADNI MCI223

subjects identified as pMCI using baseline data and224

the classifier described above (n = 64 for 2 years), i.e., 225

the enriched group. 226

RESULTS 227

Prediction accuracy, sensitivity, and specificity 228

To assess how different features affect prediction 229

accuracy, we trained models with different combi- 230

nations of features. Table 2 shows the classification 231

performance in terms of sensitivity, specificity, and 232

accuracy, for all the models trained in this study, for 233

2- and 3-year follow up periods. Using hippocam- 234

pal grading scores in addition to MoCA, ADAS13, 235

and MMSE, yields the highest accuracy in predict- 236

ing cognitive decline at 2 years. Comparing results 237

between the classifier using only the baseline cogni- 238

tive score and the corresponding classifier with the 239

added MRI features showed that for both follow up 240

periods, the accuracy of prediction is increased when 241

adding MRI features. Results also showed that pMCI 242

and sMCI groups did not have significantly different 243

age at baseline for the 2- or 3-year analysis. 244

Power analysis 245

Table 3 summarizes the CDR-SB values for the 246

unenriched and enriched MCI cohorts that met the 247

inclusion criteria described in the Methods and that 248

were used to complete the power analysis. 249

Figure 1 shows the required sample sizes for differ- 250

ent treatment effects for both unenriched and enriched 251

MCI cohorts. Using the unenriched group of MCI 252

subjects, power analysis shows that 1,075 subjects 253

(764 subjects) per arm are required in a 2-year 254

Table 2
Classifier performances

2-year follow-up 3-year follow-up

Feature sets (including Age) Sen (%) Spec (%) Acc (%) Sen (%) Spec (%) Acc (%)

MoCA 72.1 ± 2.1 62.6 ± 1.9 65.3 ± 1.5 59.4 ± 2.1 60.7 ± 1.5 60.2 ± 1.2
ADAS13 71.2 ± 2.5 71.3 ± 1.6 71.3 ± 1.3 67.4 ± 0.9 68.3 ± 2.0 68.8 ± 1.4
MoCA, ADAS13 74.8 ± 2.4 74.7 ± 1.2 74.7 ± 1.1 66.4 ± 1.8 70.6 ± 1.7 70.4 ± 1.3
MoCA, ADAS13, MMSE 76.5 ± 1.5 75.7 ± 1.3 75.9 ± 1.0 65.2 ± 1.9 70.4 ± 1.5 70.8 ± 1.2
MoCA, ADAS13, MMSE, RAVLT 76.1 ± 2.1 74.8 ± 1.2 75.2 ± 0.9 66.3 ± 1.8 69.3 ± 1.6 71.0 ± 1.3
HC, EC 76.2 ± 2.1 70.1 ± 1.3 71.7 ± 1.1 75.1 ± 1.9 68.9 ± 1.4 71.0 ± 1.3
HC, ADAS13 78.8 ± 1.3 73.6 ± 1.2 74.7 ± 1.2 75.7 ± 1.6 70.7 ± 1.4 72.6 ± 1.1
HC, MoCA 75.9 ± 2.4 72.4 ± 1.4 73.2 ± 1.2 71.6 ± 2.0 67.3 ± 1.2 69.0 ± 0.9
HC, EC, ADAS13 81.0 ± 2.2 74.2 ± 1.1 75.9 ± 1.1 75.4 ± 1.7 71.6 ± 1.3 73.4 ± 1.1
HC, MoCA, ADAS13 80.4 ± 1.6 74.3 ± 1.1 75.8 ± 0.9 75.4 ± 2.2 70.7 ± 1.2 72.8 ± 1.1
HC, EC, MoCA, ADAS13 80.2 ± 2.1 75.0 ± 0.8 76.7 ± 0.7 74.9 ± 2.4 73.0 ± 1.4 74.0 ± 1.2
HC, MoCA, ADAS13, MMSE 81.3 ± 1.8 74.7 ± 1.1 76.9 ± 0.9 74.4 ± 1.3 71.3 ± 1.4 73.3 ± 1.2
HC, EC, MoCA, ADAS13, MMSE 79.5 ± 1.9 74.6 ± 1.1 75.9 ± 1.0 75.2 ± 1.8 72.3 ± 1.3 73.2 ± 1.2
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Table 3
CDR-SB values

Baseline mean Year 1 mean Year 2 mean Year 3 mean
(std dev) (std dev) (std dev) (std dev)

unenriched MCI 1.631 (0.935) 1.956 (1.457) 2.356 (2.107) 2.866 (2.978)
enriched MCI (2 y) 1.924 (0.875) 2.68 (1.325) 4.084 (2.504) –
enriched MCI (3 y) 1.851 (0.874) 2.559 (1.359) 3.869 (2.639) 5.094 (3.788)

Fig. 1. The required sample size per arm for different treatment
effects. (Note that the 2-year and 3-year pMCI curves almost over-
lap.).

(3-year) trial of therapy with a hypothesized 25%255

effect size (80% power and 5% significance level)256

to reduce cognitive decline, measured by a two-257

point increase in CDR-SB (dotted lines in Fig. 1).258

When using the enriched cohort of MCI subjects,259

only 279 (273) subjects per arm are require for a260

2-year (3-year) trial (solid lines in Fig. 3). These261

results demonstrate that enrichment using baseline262

HC, MoCA, ADAS13, and MMSE yields a 3.8-fold263

decrease in the sample size for a 2-year study (2.8-264

fold decrease for a 3-year study).265

DISCUSSION266

In the present study, we trained models to predict267

cognitive decline in patients in the early stages of AD268

dementia. We used feature sets consisting of baseline269

measures of either cognitive test scores, MRI-based270

grading scores, or a combination of both features271

for follow-up periods of 2 and 3 years in the ADNI272

dataset. The results demonstrate that cognitive test273

scores and our MRI-based features contribute differ-274

ently to the result of the prediction and combining275

cognitive test scores and MRI-based features improve276

prediction accuracy (Table 2). Using HC, MoCA,277

ADAS13, and MMSE as features yielded the high-278

est prediction accuracy of 76.9% with a sensitivity of279

81.3% and a specificity of 74.7% at 2 years.280

In our previous work, we showed that when pre-281

dicting onset of dementia in subjects with mild282

cognitive impairment, MRI-based features (SNIPE)283

are more sensitive compared to cognitive features, 284

and even more so with longer follow-up periods, 285

while cognitive features contribute more to the speci- 286

ficity of the prediction [15]. Here, we also show 287

that cognitive features lose sensitivity when it comes 288

to predicting functional and cognitive decline at 36 289

months compared to that at 24 months. 290

While adding MRI features to cognitive scores in- 291

creases accuracy by 1% for a 2-year trial, and 2% 292

for a 3-year trial, the sensitivity of the model is more 293

important than the accuracy for clinical trial enrich- 294

ment, since we are looking for the maximum number 295

of true positives, i.e., subjects that will certainly dec- 296

line. Using MoCA and ADAS13 as features for our 297

model, we achieved nearly 75% sensitivity for two- 298

year prediction. By adding the HC SNIPE score to this 299

feature set, we were able to increase the sensitivity 300

by 5.6% to 80.4%. At three years, prediction sensi- 301

tivity of MOCA and ADAS was 66.4%, but adding 302

HC SNIPE features raises it to 75.4%, i.e., a 9% 303

increase. As we have previously shown [15], MRI- 304

driven features help contribute more sensitivity to the 305

prediction at later follow-up periods. Despite the fact 306

that predicting subtle cognitive decline is harder than 307

predicting conversion from MCI to AD, the predictive 308

accuracy of cognitive decline remains high. 309

We further estimated the statistical power of our 310

prognostic model in terms of the sample size required 311

to detect a treatment effect on the decline of cognitive 312

abilities. Using a conservative estimate of 25% treat- 313

ment effect in the power analysis, we found a 3.8-fold 314

reduction in the number of subjects required for a 2- 315

year study (and 2.8-fold decrease for 3-year. If we 316

change this estimate to an optimistic 40% treatment 317

effect, the resulting power analysis yields a 2.40-fold 318

reduction for a 3-year trial and a 3.24-fold reduction 319

for a 2-year trial. This could give a marked clini- 320

cal advantage, making the enrichment of the target 321

cohort more precise with a smaller sample size, and 322

therefore less costly. 323

Our results compare favorably to previous work. 324

Lorenzi et al. evaluated a number of biomarkers 325

to screen in subjects more likely to have cognitive 326

decline [31]. Without enrichment, their simulations 327
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required a sample size of 674 MCI patients per arm328

to detect a 25% treatment effect (90% power) on cog-329

nitive decline measured with CDR-SB in a two-year330

trial. Enrichment using either ADAS-COG, cere-331

brospinal fluid (CSF) tau, CSF A�42, CSF tau/A�42,332

hippocampal volume, CSF p-tau, or [18F]-FDG PET333

decreased the number of patients required to 270, 310,334

291, 264, 191, 287, and 240, respectively. At 191 sub-335

jects per arm, hippocampal volume offered a 3.5-fold336

reduction in the number of subjects required in their337

study. For direct comparison (25% effect, 90% power,338

2-year trial), baseline HC SNIPE, MoCA, ADAS13,339

and MMSE enables a 3.8-fold reduction (from 1,439340

subjects unenriched to 375 subjects enriched with our341

classification tool). Ithapu et al. used deep learning342

techniques to evaluate enrichment in a 2-year trial of343

cognitive decline [32]. They found that 1,586 subjects344

were required to detect a 25% effect (80% power, sig-345

nificance of 0.05) without enrichment and that only346

281 subjects were required per arm using baseline347

[18F]-FDG PET, amyloid florbetapir PET, and struc-348

tural MRI. While these results are very similar to ours,349

we are agnostic to the source of amyloid positivity.350

We can use amyloid results from inexpensive CSF-351

derived biomarkers or more expensive PET scans.352

Recent work by Wolz et al. evaluated enrichment353

in clinical trials in MCI using markers of amyloid354

(PET imaging or CSF analysis of beta amyloid) and355

neurodegeneration (measured by hippocampal vol-356

ume) for a 25% effect size to decrease the rate of357

cognitive decline measured with MMSE or ADAS-358

Cog13 (with 80% power and significance level 0.05)359

[33]. While 908 unenriched subjects per arm were360

required for the ADAS-Cog13 outcome measure, this361

number could be reduced to 605 using baseline hip-362

pocampal volume, to 458 using baseline measures of363

amyloid, and 363 (corresponding to a 2.5-fold reduc-364

tion) when using both. In a previous study, we have365

shown that SNIPE scores are better predictors of cog-366

nitive decline compared to volumetric measurements367

[34], and as a result, this score would further decrease368

the number of subjects needed, when used instead of369

volumetric-based measurements.370

It is important to note that patient selection in clin-371

ical trials is an expensive process. At the beginning of372

a trial, one must screen a large number of subjects to373

select those that meet eligibility and enrichment cri-374

teria. This process currently involves the collection of375

several biomarkers (structural MRI, CSF biomarkers,376

amyloid/tau PET), but generally do not include pre-377

diction measures to identify subjects that are likely378

to have cognitive and functional decline. In ADNI,379

35% of the MCI subjects showed decline (define by 380

at least two-point increase in CDR-SB) after 2 years. 381

This shows the need to screen roughly 3x more MCI 382

subjects at baseline. With 58% of subjects declining 383

after 3 years in ADNI, studies need to screen almost 384

twice as many subjects for 3-year trials. Decreasing 385

the required sample size to demonstrate a clinical for 386

effect would lead to massive savings in the follow- 387

up visits of enrolled patients (but with a higher cost 388

at enrollment). For example, assume 1000 subjects 389

are required for a 2-year trial. With enrichment, this 390

number is reduced to 263. However, 3x more subjects 391

need to be screened at baseline if the rate of ADNI 392

decliners is used. This gives a total of 3 × 263 sub- 393

jects at baseline +263 at year 1 and 263 at year 2, for 394

a total of 1,315 subject visits (compared to 3,000 sub- 395

ject visits with no enrichment, a 56% savings). Using 396

a method to enrich the cohorts and decrease the num- 397

ber of subjects needed for a trial would therefore have 398

a significance impact on the budget needed for such 399

trials. 400

There are a number of encouraging trials of 401

lifestyle interventions that have demonstrated ben- 402

eficial effects in terms of improving cognition and 403

delaying [35–39]. A reliable tool that can accurately 404

identify elderly individuals with higher risk of cog- 405

nitive decline will enable earlier implementation of 406

such strategies in the more at-risk population, which 407

will in turn improve the likelihood of slowing down or 408

preventing cognitive decline, before substantial neu- 409

rological damage has occurred. In addition, such a 410

tool may help to improve patient compliance in such 411

programs. 412

Our study is not without limitations. It is important 413

to note that the results here apply only to MCI subjects 414

that present with an amnestic phenotype. While some 415

ADNI subjects with posterior cortical atrophy and 416

sufficient memory decline may have met the inclusion 417

criteria used here, other atypical MCI groups (e.g., 418

limbic predominant, hippocampal sparing, logopenic 419

progressive aphasia, primary progressive aphasia, or 420

frontal variant of AD) would have to be tested specif- 421

ically in the future. With this in mind, the enrichment 422

potential described here is possible only in trials of 423

amnestic MCI subjects with inclusion criteria similar 424

to those indicated above. Trials of MCI subjects with 425

non-amnestic presentation, or with different inclu- 426

sion criteria would need to carefully evaluate the use 427

of such a selection tool as presented here. 428

Because of the relatively limited size of the dataset, 429

we used 10-fold cross validation and report the aver- 430

age accuracy, sensitivity, and specificity across the 431
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10 folds. This provides a robust estimate of perfor-432

mance, but it may be potentially optimistic. Other,433

larger independent databases are needed for further434

validation. Furthermore, while there is evidence that435

cognitive decline may be non-linear over the full436

course of the disease [40], we assume only a linear437

change over the short 2 and 3 year periods consid-438

ered here. The proportion of converters enrolled in the439

ADNI may also change as MCI patients are followed440

for longer periods. Finally, here we measured against441

the decline in the unenriched MCI cohort from ADNI442

with specific inclusion criteria which might not nec-443

essarily be representative of real population of MCI444

subjects seen in trials or in the clinic.445

CONCLUSION446

In this work, we were able to predict future cog-447

nitive and functional decline in the early stages of448

AD using a prognostic model that combines cogni-449

tive scores and MRI-based biomarkers from a single450

baseline visit. These features are easy to measure,451

making this method efficient for clinicians to use as452

an aid to guide psycho-social interventions for indi-453

vidual patients based on their individual short-term454

prognosis. Refining clinical trial cohorts to the enroll-455

ment of subjects in the early stages of AD with a456

higher chance of declining over a shorter period of457

time could improve the efficiency of these trials.458
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[20] Manjón J V., Coupé P, Martı́-Bonmatı́ L, Collins DL, Rob-572

les M (2010) Adaptive non-local means denoising of MR573

images with spatially varying noise levels. J Magn Reson574

Imaging 31, 192–203.575

[21] Sled JG, Zijdenbos AP, Evans AC (1998) A nonparametric576

method for automatic correction of intensity nonuniformity577

in MRI data. IEEE Trans Med Imaging 17, 87–97.578

[22] Dadar M, Fonov VS, Collins DL, Neuroimaging D579

(2018) A comparison of publicly available linear MRI580

stereotaxic registration techniques. Neuroimage 174,581

191–200.582

[23] Collins DL, Neelin P, Peters TM, Evans AC (1994) Auto-583

matic 3D intersubject registration of MR volumetric data in584

standardized Talairach space. J Comput Assist Tomogr 18,585

192-205.586

[24] Fonov V, Evans AC, Botteron K, Almli CR, Mckinstry587

RC, Collins DL (2011) NeuroImage Unbiased average age-588

appropriate atlases for pediatric studies. Neuroimage 54,589

313–327.590
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